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It follows that
b = 42°B (17)
and that
(18)

B = $ADA = 3 X I by(ai-a)) .
T

If some of the components of the b matrix are un-
known, for example, if refinement is carried out in two
dimensions only, one may still obtain an equivalent
isotropic temperature factor by assuming that the
unknown components of the anisotropic matrix and the
isotropic matrix are identical, i.e., we may set

B -

. g (A¥A*)y (19a)

by virtue of (6).

Suppose we have refined an [001] projection; we may
write
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r
bll b12

B
vy a*c* cos g*

B
b= b bye 1 b*c* cos o*

(20)

B B B

—a*c* cos f* —b¥*c* cos a* — c*?

4 4 4 P,
and applying (18), we find after some manipulation that
the equivalent isotropic temperature factor is

T T (ec*y

It should be pointed out that the equivalent isotropic

temperature factor defined here is not necessarily that

which would minimize the least-squares error. This could

be found only by taking into account the least-squares
error matrix for the individual components.

[a®by; +ab cos p(2b;,) +b%by,] . (21)
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In a recent short communication, Kraut (1958) has
proposed a systematic method of scaling a set of mutually
intersecting reciprocal lattice planes obtained using zero-
level precession camera photographs. The purpose of this
paper is to propose an alternative method applicable
where not all planes are mutually intersecting, as when
upper level photographs are used.

Kraut’s method may be briefly summarized as follows:
If k; is the desired scaling constant for reciprocal lattice
plane ¢ or film ¢, and if 7 is the average value of the
reciprocal-point-by-point ratio between reflections oc-
curring on films 4 and j, or ry; = {Ijpu)/Licniry)» then the
desired constant for film 7 is given by:

N e (120
ki — [HL "‘} )
j=17§iTnj

where n is the total number of planes and k, is arbitrarily
chosen to be unity. The criterion leading to this equation
is the minimization of the following function with respect

to all log &;’s
n n ki 2
Plony) = 3 X (o =logra) . (@

=1 j=1 7
This approach is inapplicable to upper level photographs,
in which case there are planes which do not intersect,
for here r;; and rj; are indeterminate quantities. It is not
correct simply to omit such terms from the product,
for this implicitly assumes that r;j/r;; = 1, which could
be true only if the scaling constants for the two planes
were identical.

In the process of obtaining data for a Fourier synthesis

of myoglobin with 2 A resolution we collect twenty-two
sets of zero and upper level precession photographs,
of the type h,n,l(n =0 to 6), h,k,n (n =0 to 6),
and h, k, k—n (n = 0 to 7). We have found the following
to be a convenient method of scaling these films so as to
make the maximum possible use of film intersection.
Define J;; as the sum of all reflections on film ¢ which
are common to film j, and Jj; as a similar sum on film j.
Because of reciprocal-space symmetry these may lie on
more than one row. If ¢« and j do not intersect, then
Jij = Jj; = 0, but both may be considered formally as
present. Define k; as the desired scaling constant for film j.
If there were no experimental errors then the ‘residual’
for one pair of planes would be zero when proper scaling
constants were used: e;; = k;J;j—kjJ; = 0. This is never
realized, but the best set of k’s will be that minimizing
the sum of squares of residuals, the sumn being taken over
all pairs of intersecting films. From a formal viewpoint
the sum may be taken over all possible combinations of
planes with the above stipulation about J values of non-
intersecting planes.

n n
E =3 3 (kiJij—kjJji)* . (8)
i=1j=1
Differentiation with respect to a particular k; yields:
n
Zl(kiJ?j—ijjiJij) =0, 4)
]=
For convenience, J;; may be defined as zero, since the

terms with j = ¢ cancel.
Changing to a more convenient nomenclature, let:
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n
Qaig = —Jiij,; = Qji and: Qi =kz J%k .
=1
Then equations (4) reduce to:

n
2&1}]6;':0, t=11t n.
j=1
As these n equations in n unknowns are not linearly
independent, one can arbitrarily specify the value of one
variable and reject one equation as redundant. Let us
define x; = kj/k» and reject the nth equation. Then the
new set, of n—1 independent equations is:
n—1
2 AijT) = —Qip, t=1to n—1. (5)
j=1

These equations may be solved by various standard
methods; for our work this is done with an existing
Edsac IT computer subroutine.

If it is inconvenient to solve the simultaneous equa-
tions directly and if trial values of the scaling constants
are known, then the constants can be quickly refined
using a variant of equation (4):

n
by =120 (6)
> Jg
=1

where the primed k’s are the trial values and the new
values are ‘normalized’ after each cycle by dividing
through by some kj.
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It is of interest to compare the functions minimized
in the two methods. Kraut uses as the ratio between two
planes the average value of the ratios between individual
reflections, thus emphasizing the contributions of weak
reflections. We use the ratio of the sums of all corre-
sponding reflections on the two films, emphasizing the
strong reflections. (This can be compensated for by some
weighting method such as rejecting the strongest inten-
sities for scaling or using scattering amplitudes instead
of intensities, thus producing an effective weighting
factor of I—%.) If only medium intensities are used the
two types of ratio will be quite similar in value. If one
uses the latter ratio in Kraut’s equations (1) and (2)
above, then:

ry = Jpfdy = (rp)?

ke = III (rs/rns)2I" (1)
7:

and the quantity minimized is:
n n
F(ki, J,;]') = 2 2 (Iog kiJij—IOg kj-]j,;)z . (2/)
i=1j=1

Thus we minimize the difference between two quantities
and Kraut effectively minimizes the difference between
the logarithms of these same quantities.
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Introduction
The crystal structure of Cs,CoCl, has been reported by
Poraj-Koshitz (1956) and Cs,ZnCl, has been shown to be
isomorphous by Brehler (1957). In connection with our
study of the configuration of CuCly ~ in [N(CH,),],CuCl,
(Morosin & Lingafelter, 1959) it was considered of in-
terest to investigate the corresponding compounds of
other bivalent metals. The present report includes the
isomorphous pair, [N(CHj,),],ZnCl, and [N(CH,),},CoCl,.

Experimental
Crystals of both compounds were grown by evaporation
at room temperature of aqueous solutions containing the
stoicheiometric proportions of N(CH,),Cl and MIICl,. The
crystals of both the colorless zine compound and the
blue cobalt compound were short rod-like prisms bounded
by (011) and terminated by (100).

Precession and Weissenberg photographs taken with
copper radiation (4 = 1:5418 A) indicated the two
compounds to be isomorphous. The following cell dimen-
sions were obtained; for the zinc compound, results were
standardized by superimposing NaCl (e, = 56280 A)
photographs on the same films.

Zincate Cobaltate
a, 12-2684-0-007 A 12:244+0-03 A
b, 8-964 +0-007 8:92 - 0-02
¢ 155154 0-012 15:3940-03

Systematic absences of (0kl) for £+ odd and of (hk0)
for  odd indicate the space group to be Prnma or Pn2a.
Number of molecules per cell = 4. Calculated density,
1-38 g.cm.~3; observed, 1-34 g.cm.”3,

(RO) intensity data were collected for [N(CH,),},ZnCl,
with an integrating precession camera (Stewart, 1958)
using Mo radiation and partial three-dimensional data
(i.e., Okl through 6kl) were collected by means of a non-
integrating Weissenberg camera. The number of observed
reflections was 540. Intensities were scanned by means
of a photometer and relative peak heights were obtained
and used as intensities, being placed on an absolute scale
by comparison with calculated values at a later stage of
the structure determination.

Lorentz and polarization factors were applied and
structure factors calculated using Thomas & TUmeda
(1957) scattering factors. Calculations were carried out
on an IBM type 650 computer.

Determination of the structure

The similarity of the axial ratios of the [N(CH,),],ZnCl,
(1-368:1-000:1-731) and Cs,ZnCl, (1:317:1-000:1:755;
Brehler, 1957) and the identity of their space-group
extinctions suggest that the structures are probably
similar. Therefore the space group Pnma was initially
assumed and later verified by the final structure.

A Harker Section P(z, }, z) established the positions
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